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Non-linear current–voltage characteristics
in anisotropic epoxy resin–graphite flake composites

A. CELZARD, G. FURDIN, J. F. MAREª CHË, E. McRAE
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The conductivity of anisotropic composite materials constituted of single-crystal graphite

flakes in an epoxy resin and subjected to a variable d.c. electric field has been studied.

Non-linearities in the current—voltage characteristics have been found and are discussed

within the framework of two theoretical models, the non-linear random resistor network and

the dynamic random resistor network. We show that our materials can be modelled by the

non-linear random resistor network, which, to our knowledge, is the first time that the

predictions of this model seem so well supported in a real, three-dimensional composite.
1. Introduction
Many studies have treated the phenomenon of dielec-
tric breakdown in networks constituted of insulating
and conducting bonds. They concern systems of con-
ducting particle concentration p less than p

#
, the criti-

cal threshold concentration. When the electric field
applied to such a system is increased, dielectric break-
down occurs with a consequential increase in conduct-
ivity [1—9]. The case in which p'p

#
has also been

treated but in this case, it is the conducting links which
are broken and become insulating upon increasing the
electric field [3, 7, 10, 11]. In both cases, the current—
voltage (I—» ) relationship becomes strongly non-
linear when breakdown starts to occur. Studies
relative to percolating systems, treating reversible
non-linearity are considerably rarer. In this work, we
were particularly interested in the studies of Gefen et
al. [12—14] for systems in which the concentration, p,
tends toward p

#
from above. These authors considered

two different phenomenological models to interpret
the deviations from ohmic behaviour in their com-
posites: the non-linear random resistor network
(NLRRN) and the dynamic random resistor network
(DRRN). In the present work, the applicability of
these two models to epoxy graphite flake composites
was tested and the implications, as concerns the con-
ductivity mechanisms, were examined.

2. Experimental procedure
The composites were synthesized in the form of thick
films (100—200 lm) constituted of an epoxy resin and
a conducting charge of graphite particles. These latter
are designated flat micronic graphite (FMG) [15] and
have the following characteristics. They are single-
crystal graphite, roughly disc-shaped, of average dia-
meter 10 lm and thickness of the order of 0.1 lm, thus
possessing an aspect ratio of about 100. The desired

volume fraction, /, of the flakes is incorporated into

0022—2461 ( 1997 Chapman & Hall
the epoxy resin which has been previously dissolved in
its specific solvent. After homogenization of the
resin—solvent—FMG mixture, it undergoes thermal
treatment leading to evaporation of the solvent and
reticulation of the resin. Using this protocol, samples
of various concentrations in conducting charge were
obtained with 0(/40.09.

The high aspect ratio of the FMG particles obviously
confers on them the capacity to deposit in a flat
manner. Thus composite materials are obtained in
which the conducting charge is preferentially oriented
parallel to the plane of the film. Using X-ray diffraction,
an average disorientation of the graphite flakes of
$20° was observed, independent of the volume frac-
tion of FMG present [16]. This factor, as well as the
intrinsic conductivity anisotropy of graphite (r

!
/r

#
'

102), therefore motivated two types of measurement for
each sample, one parallel and a second perpendicular
to the plane of the film. The results show that these are
three-dimensional, but strongly anisotropic, composite
films with r

!
/r

#
between 104 and 105 for the highest

concentrations tested, 0.054/40.09 [17, 18]. Such
measurements further allowed observation of an
insulating to conducting transition with a percolation
threshold at a critical concentration, /

#
, of 0.013 [16].

3. Theory
The first model which can account for current—voltage
non-linearities in a composite calls upon a random
resistor network of intrinsically non-linear resistors;
this is commonly referred to [12—14, 19] as a non-
linear random resistor network (NLRRN). Each res-
istance has a small, non-linear component, so that the
current—voltage relationship is

» " rI#Cla (1)

where r and C are constants and a is an exponent

greater than unity. For sufficiently small values of
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current, the behaviour is considered linear. A cross-
over current is defined such that beyond it, the overall
(non-linear) conductance deviates from the linear con-
ductance by a fraction (see below) defined as e [12].
This current I

#
, is such that

I
#
& A

r

DC DB
1@(a~1)

(2)

In the second type of model, when the local electric
field exceeds a critical value, an initially insulating
(open) link may become a conducting one. In the
literature, this is referred to as a dynamic random
resistor network (DRRN) [12]. When the electric field
to which a composite is subjected is sufficiently small,
the material consequently has quasi-ohmic and ohmic
behaviour for the NLRRN and DRRN models, re-
spectively. In other words, » and I are related by

I " &
0
» (3)

where &
0

is the linear conductance. When the current
(or field) is increased, deviations from linearity arise
beyond the critical values (I

#
, »

#
), for which the system

then verifies

I " &» with & " &
0
(1#e) and e(1

(4)

Gefen et al. [12] showed that in this case, I
#
follows

a scaling relationship such that

I
#
& &x

0
(5)

x is a critical exponent, the value of which is directly
linked to the spatial dimension, d, and to the type of
model utilized to describe the non-linearity of the
percolating medium. Thus, based on Gefen et al.’s
sample was measured using a Keithley 610 BR elec-
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trometer. Coaxial cables were used throughout the
experimental setup for the interconnections and the
measurements themselves were carried out in a shiel-
ded cell.

4.1. Search for the pertinent model
We will now see which of the two models presented
above best represents our materials. To do so, the
conductivity of several samples containing different
volume charges of FMG (above the threshold) was
measured as a function of electric field, both parallel
and perpendicular to the plane of the film. For the
range of electric field and FMG concentrations
utilized (see numerical data below), all materials
showed non-linearity in the I—» characteristics. For
the lower values of electric field applied across the
samples, the characteristics are linear but the
behaviour becomes supralinear as the electric field
rises. Furthermore, we have verified that this
behaviour is reversible. Consequently, our materials
lend themselves to analysis using the NLRRN and
DRRN models introduced in Section 1.

Instead of using the parameters I and », we will use
j and E, the current density and electric field, respec-
tively. The conductances & and &

0
of Equations 3—5

will then be replaced by the conductivities r and r
0
.

Because it is difficult to determine the couple ( j
#
, E

#
)

based solely on the curve j (E) which deviates only
slowly from linearity, we have used the following
method. Different values of e were chosen for use in
Equation 4 (0.01, 0.05 and 0.10). For a sample with
a given FMG charge, thus corresponding to a given
conductivity, r

0
, we have extracted the critical current
t

where m is the correlation length critical exponent and
t that of the conductivity, each of these exponents
being applicable over a small range of volume concen-
trations above the percolation threshold. In three di-
mensions, the currently accepted values are m+0.89
and t+1.7.

Aharony [13] later established stronger bounds for
the exponent x in the NLRRN

0.97 [ x [ 1.05 in three dimensions (6b)

These limits on the values of x are valid when the
exponent a of Equation 1 satisfies 1(a(#R.

4. Application to epoxy–FMG
composites

For each composite sample, the electrical conductivity
was measured as a function of the electric field using
a number of series-connected, dry batteries which al-
lowed a continuously variable d.c. voltage of up to
750 V to be obtained. The current flowing in the
in the NLRRN: x [
m
t
(d!1) i.e. x[1.05 in three dimensions

in the DRRN: x [ 1#

m
i.e. x[1.52 in three dimensions





(6a)

results [12] corresponding to the value of conductivity, r, which
verifies

r " r
0
(1#e) (7)

where r
0

is the conductivity of the composite in the
ohmic region. r thus being calculated, comparison
with experimental r (E ) curves allows locating the
corresponding value of current density, j

#
.

This method was applied to several samples of con-
centration near the percolation threshold. In order to
apply Equation 5, we then plotted the values of j

#
as

a function of r
0

on a log—log plot for different
measurements carried out parallel and perpendicular
to the plane of the films. These curves are given in
Fig. 1. It is observed that the results are relatively
insensitive to the three values of e chosen above. The
exponent x of Equation 5 is then taken as the average
slope of the three curves.

As observed on this figure, the values of x obtained
are in excellent agreement with those predicted using
the NLRRN approach. This leads to the belief that the
microscopic resistances in the resin—FMG system are

intrinsically non-linear and that it is not necessary to



Figure 1 Log( j
#
) versus log(r

0
), above the threshold, (a) within the

plane of the composite films and (b) perpendicular using three
values of e: (s) 0.1, (h) 0.05, and (n) 0.01. The value of the critical
exponent, x, defined by Equation 5 is taken as the average of the
three slopes in each of the two cases.

call upon the creation of supplementary percolation
paths when the electric field is increased. Because
graphite is generally ohmic, it must thus be the inter-
particle resistances which dominate the macroscopic
conductivity behaviour. However, the expression for
x in the DRNN model is only given as a simple
inequality, contrary to the case of the NLRRN (Equa-
tion 6b). Consequently, a lower limit to the possible
values remains unknown. Thus, the fact that a value
x+1 is found does not unambiguously and exclus-
ively prove that we are in the presence of a NLRRN.
This is the reason for which it was necessary to supple-
ment our analysis with the following arguments,
which show that the DRRN is not pertinent in the

case of our materials.
4.2. Confirmation of model
Gefen et al. [14] showed that their curves I (») could
be very well fitted by the relationship

I " &»#&»b (8a)

where & and b are adjustable parameters, and with
b such that the exponent x verifies, in the DRRN

x "

b

b!1
(8b)

Equation 8a between I and » can fit our data very
well, but the relationship established between x and
b in Equation 8b is not verified at all. This result
therefore would suggest that the DRRN is not applic-
able.

Chakrabarty et al. [19] went further, supposing
a supplementary scaling law. These authors postu-
lated that their curves I (») could be perfectly fitted

Figure 2 Fit of current density, j, as a function of electric field, E, to
the expression j"r

1
E#r

2
E2. The volume percentages of FMG

incorporated in each sample are indicated on the right-hand side of
each figure. Replacing the quadratic term with a cubic term gives
results which are visually indistinguishable. (a) Basal plane

measurements, (b) transverse measurements.
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according to the expression

I " &
1
»#&

2
»2 (9)

where &
1

is the linear conductance (i.e. in the ohmic
region corresponding to the quantity &

0
in Equation

3) and where &
2

is the second-order conductance.
Thus &

2
would follow a scaling law such that

&
2

& &y
1

(10)

Because the non-linearities are considered to become
significant only when &

2
»2 attains a certain fraction

of &
1
» as discussed above for Equation 2, then

I
#
&

&2
1

&
2

(11a)

and because, from Equation 5, I
#
&&x

1
, one has

x# y " 2 (11b)

We have verified that a scaling law exists calling
upon an exponent y. To do so, we fitted our data with
a non-linear term varying as »2, but we also note that
1 2
j"r

1
E#r

2
E3 (c) in and (d) across the basal plane.

an expression I"&
1
»#&

2
»3 would also have been
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valid. In general

I " &
1
»#&

2
»# (12a)

The critical current would then vary as

I
#
& &c@(c~1)

1
&1@(1~c)
2

(12b)

and consequently

(c!1)x# y " c (12c)

Fig. 2 presents, on a logarithmic scale, j as a function
of E for our epoxy—FMG composites (for concentra-
tions above the threshold) fitted by the relationship

j " r
1
E#r

2
E2 (13)

The agreement is excellent, and the correlation coeffi-
cient R is greater than 0.9995. If the fit is carried out
using a non-linear term proportional to E3, the fit
obtained is also very good, with R only slightly small-
er. The agreement decreases slowly for higher order
terms of E. It might also be noted that, as expected, r

1
is found identical to the quantity r of Equation 7,
0
used above to determine j

#
.

Figure 3 Test of relationship r
2
&ry

1
for concentrations above the threshold. The values of y are the slopes of the indicated lines. The values

of r and r were found based on the j(E) data of Fig. 2 fitted to j"r E#r E2 in (a) the basal plane and (b) perpendicular, and to

1 2



We have used the values of r
1

and r
2

for each
FMG concentration for the two types of fit (E2 and
E3) in order to determine the exponent y. So as to
apply Equation 10, the results are presented on
a log—log plot in Fig. 3.

The results of this figure show that all the curves
yield a value of y close to unity. The basal plane values
are higher than the transverse values, and passing
from a quadratic fit to a cubic fit increases the value of
y by about 0.07 in both directions. This is in very good
agreement with what was predicted by Chakrabarty
et al. [19] who, based on the nodes, links and blobs
image of the infinite cluster [20], showed that

y Z 2!
m

t
(d!1) (14)

i.e. yZ0.95 in three dimensions in the NLRRN. It can
thus be noted that the expression (c!1)x#y"c
given in Equation 12c is verified, with x"y"1,
whether c be equal to 2 or 3.

5. Conclusion
By measuring the electrical behaviour of epoxy—
graphite flake composites under the effect of a d.c.
electric field, it has been shown that the current—
voltage characteristics are reversibly non-linear be-
yond a certain critical field. The magnitude of this field
is linked to the concentration in conducting particles
which allowed the existence of scaling relations to be
shown. The corresponding critical exponents were
demonstrated to be compatible with the NLRRN
model, whereas the DRNN model had to be rejected.
To our knowledge, this is the first time that the
NLRRN has been encountered in a real, three-dimen-
sional composite. From the point of view of conduc-
tion mechanisms, the implications of the NLRRN are
the following. Because the microscopic resistances of
the model system are non-linear and the graphite
particles themselves in the real composite are ohmic,
the non-linear I—» characteristics must originate from
the interfacial contacts between the graphite particles.
In other words, it is these contacts which govern the
overall macroscopic electrical behaviour of the com-
posite material. Such a conclusion is well known in
other composites and explains why the resistivity of
heavily loaded composites is always significantly
greater than that of the conducting particles themsel-

ves [21, 22]. A tunnelling mechanism between par-
ticles might explain these non-linear I—» character-
istics, and this will be treated elsewhere.
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